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Exercise 1. Exercice d’échauffement

(1) Étant donné une arête {i, j} ∈ X, on observe qu’il existe une permutation σ ∈ S4 telle
que σ · {1, 2} = {i, j}. Par conséquent, l’orbite de {1, 2} est l’ensemble X lui-même.

(2) Si une permutation dans S4 stabilise {1, 2}, elle doit permuter les indices 1 et 2. Ainsi,
nous avons

StabS4({1, 2}) = {e, (1 2), (3 4), (1 2)(3 4)}.

(3) En effet,

|S4 · {1, 2}||StabS4({1, 2})| = |6| · |4| = 24 = |S4|.

Exercise 2. Action sur les classes à gauche
Notons l’application G×G/H → G/H par Φ. Notons Φg l’application

Φ(g,−) : G/H → G/H

aH 7→ gaH

(1) — Tout d’abord, comme nous avons défini Φg en utilisant une représentation spécifique
aH d’une classe à gauche, nous devons montrer que Φg est bien définie. Nous
devons montrer que pour tout a, b ∈ G tels que aH = bH, leurs images vérifient
Φg(aH) = Φg(bH). Cela est vrai car

Φg(aH) = (ga)H = {(ga)h | h ∈ H}
= {g(ah) | h ∈ H}
= {g(bh′) | h′ ∈ H}
= {(gb)h′ | h′ ∈ H}
= (gb)H = ϕg(bH)

où nous avons utilisé l’hypothèse aH = bH à la troisième ligne.

— Nous observons que ϕg ◦ ϕg−1 = IdG/H et ϕg−1 ◦ ϕg = IdG/H , ce qui prouve que Φg

est bijective avec l’inverse (ϕg)
−1 = ϕg−1 , comme souhaité.

— Enfin, nous prouvons que pour tous g, g′ ∈ G, nous avons Φgg′ = Φg ◦Φg′ . C’est un
calcul simple :

Φgg′(aH) = gg′aH = Φg(g
′aH) = (Φg ◦ Φg′)(aH).
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(2) Par définition,

StabG(gH) = {g′ ∈ G | Φg′(gH) = gH}
= {g′ ∈ G | g′gH = gH}
= {g′ ∈ G | g−1g′gH = H}
= {g′ ∈ G | g−1g′g ∈ H}
= {g′ ∈ G | g′ ∈ gHg−1} = gHg−1.

Exercise 3. Supposons d’abord que K et H sont des sous-groupes conjugués de G avec K =
gHg−1 pour un certain g ∈ G fixé. Nous définissons un morphisme de G-ensembles comme suit :

φ : G/K → G/H

aK 7→ agH.

Comme dans l’exercice précédent, nous devons montrer que φ est bien définie. À cette fin,
supposons que aK = bK. Cela équivaut à dire que b−1a ∈ K. Nous devons montrer agH = bgH.
Cela équivaut à g−1b−1ag ∈ H, ce qui est vrai puisque b−1a ∈ K et g−1Kg = H. De plus, c’est
un morphisme de G-ensembles car

φ(g′ · aK) = φ(g′aK) = (g′ag)H

= g′ · (agH) = g′ · φ(aK).

Nous définissons maintenant son inverse

ψ : G/H → G/K

aH 7→ ag−1K.

En utilisant un argument similaire, nous pouvons montrer que ψ est bien définie et que c’est
un morphisme de G-ensembles. Il est clair que φ et ψ sont inverses l’un de l’autre, prouvant la
réciproque.

Inversement, supposons que ϕ : G/H → G/K est un isomorphisme de G-ensembles. Il existe
g ∈ G tel que ϕ(H) = gK. Nous visons à montrer que K = gHg−1. Comme ϕ est bien définie,
nous avons que

gK = ϕ(H) = ϕ(h−1H) = h−1ϕ(H) = h−1gK

pour tout h ∈ H. Ainsi ghg−1 ∈ K pour tout h ∈ H et donc gHg−1 ⊆ K. D’autre part,
ϕ(H) = gK implique que ϕ−1(K) = g−1H. En utilisant le même argument pour ϕ−1 et g−1,
nous obtenons que g−1Kg ⊆ H, ce qui montre que K = gHg−1.

Exercise 4. (1) Nous définissons une application Φ : G→ Bij(X) par g 7→ Φg, où Φg(W ) =
g(W ) pour tout W ∈ X. Tout d’abord, prouvons que l’application est bien définie,
c’est-à-dire que pour tout g ∈ G, Φg est une bijection sur X. En effet, comme g est un
automorphisme, il existe g′ ∈ G tel que g ◦g′ = g′ ◦g = eG, où eG est l’élément neutre de
G, c’est-à-dire eG = idV . Nous pouvons alors vérifier que Φg ◦Φg′ = Φg′ ◦Φg = idX pour
conclure que Φg est une bijection. Il est simple de vérifier que ΦidV = idX . De même,
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pour tout g, g′ ∈ G et W ∈ X, (g ◦ g′)(W ) = g(g′(W )) par définition des compositions
d’applications, ce qui nous donne Φgg′ = Φg ◦Φg′ . Nous concluons que Φ est une action.

(2) Prouvons que pour tout W,W ′ ∈ X, il existe g ∈ G tel que g(W ) = W ′ pour conclure
que l’action est transitive. Considérons {v1, v2} une base de W que nous complétons en
une base {v1, v2, v3} de V . De même, considérons {w1, w2} une base de W ′ que nous
complétons en une base {w1, w2, w3} de V . L’application linéaire définie par g : V → V ,
v1 7→ w1, v2 7→ w2, v3 7→ w3 est surjective et donc bijective (et donc un isomorphisme)
par le théorème du noyau-image. Il est clair par définition que g(W ) = W ′, donc nous
avons terminé.

(3) Par le point (2), pour tout W ∈ X, |OW | = |X|. Fixons un tel W . Nous savons que

|OW | = |G|
|StabG(W )|

.

De plus, nous savons que G est le sous-groupe des matrices inversibles deM3(F2) et donc
que |G| = (23−1)(23−2)(23−4) = 7 ·6 ·4 = 168 (vous avez vu cela en algèbre linéaire).
Trouvons maintenant |StabG(W )| pour conclure. Considérons {v1, v2} une base de W
que nous complétons en une base {v1, v2, v3} pour V . Si g ∈ G fixeW , nous devons avoir
g(v1), g(v2) ∈ W linéairement indépendants. Il y a 6 tels choix. Maintenant, les choix
définissant un tel isomorphisme linéaire g lorsque g(v1) et g(v2) sont fixés se résument
aux choix de l’image de v3 telle qu’elle ne soit pas contenue dansW . Il y a |V |−|W | = 4
de ces choix, donc nous concluons que |StabG(W )| = 6 · 4 = 24 et que |X| = 168

24 = 7.

Exercise 5. (1) Le théorème de l’orbite-stabilisateur donne :

|G · 1||StabG(1)| = |G|.

Comme l’action est transitive, il n’y a qu’une seule orbite de l’action et donc |G ·1| = n.
Par conséquent, n | |G|.

(2) Nous laissons au lecteur de vérifier que la conjugaison définit une action sur l’ensemble
des sous-groupes de G.

Nous avons que

StabG(H) = {g ∈ G | gHg−1 = H}.

Le groupe ci-dessus, StabG(H), est connu sous le nom de normalisateur de H dans G,
souvent noté NG(H). Notez que NG(H) est le plus grand sous-groupe de G qui contient
H comme sous-groupe normal.

Exercise 6. Nous procédons par contradiction. Supposons que pour tout x ∈ X, il existe
g ∈ G tel que g · x ̸= x. Cela signifie précisément que tous les stabilisateurs StabG(x) sont
des sous-groupes stricts de G, et donc ont une cardinalité |StabG(x)| = pkx < pn pour certains

0 ≤ kx < n. Soit X̃ un ensemble de représentants des orbites. Par une formule vue en cours,
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nous avons :

|X| =
∑
x∈X̃

|G|
|StabG(x)|

=
∑
x∈X̃

pn

pkx

= p ·
∑
x∈X̃

pn−1

pkx

ce qui prouve que p||X|. Cela contredit l’hypothèse et donc il doit exister x ∈ X tel que son
stabilisateur soit G, c’est-à-dire tel que g · x = x pour tout g ∈ G.


