THEORIE DES GROUPES 2024 - 25, SOLUTIONS 2

Exercise 1. Ezercice d’échauffement

(1) Etant donné une aréte {i,j} € X, on observe qu'il existe une permutation o € Sy telle
que o - {1,2} = {i,j}. Par conséquent, l'orbite de {1,2} est I’ensemble X lui-méme.

(2) Si une permutation dans Sy stabilise {1, 2}, elle doit permuter les indices 1 et 2. Ainsi,
nous avons

Stabg, ({1,2}) = {e, (12),(34),(12)(34)}.

(3) En effet,
[Sa - {1, 2}|[Stabs, ({1,2})| = [6] - [4] = 24 = |S4].

Exercise 2. Action sur les classes a gauche
Notons I'application G x G/H — G/H par ®. Notons ®, I'application

®(g,—):G/H —- G/H
aH — gaH

(1) — Tout d’abord, comme nous avons défini ®, en utilisant une représentation spécifique
aH d’une classe a gauche, nous devons montrer que ®, est bien définie. Nous
devons montrer que pour tout a,b € G tels que aH = bH, leurs images vérifient
O4(aH) = @4(bH). Cela est vrai car

©y(aH) = (9a)H = {(ga)h | h € H}
={g(ah) | h € H}
={g@n) | 1" € H}
={(gt)n" | 1" € H}
= (gb)H = y(bH)

ol nous avons utilisé I’hypothese aH = bH a la troisieme ligne.
— Nous observons que ¢g4 0 ¢y-1 = Idg,y et ¢g-1 0 ¢y = Idg g, ce qui prouve que P,
est bijective avec I'inverse (¢g) ™1 = ¢g4-1, comme souhaité.

— Enfin, nous prouvons que pour tous g, ¢’ € G, nous avons &,y = &, 0Py, C'est un
calcul simple :

Py (aH) = gg'aH = ®4(g'aH) = (By0 Py)(aH).
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(2) Par définition,
Stabg(gH) = {g' € G | @y (gH) = gH}
={d €G|ggH=gH}
={geG|yg'ggH =H}
={geG|g'ggecH}
={gdeG|g egHg '} =gHg".

Exercise 3. Supposons d’abord que K et H sont des sous-groupes conjugués de G avec K =
gH g™ pour un certain g € G fixé. Nous définissons un morphisme de G-ensembles comme suit :

¢v:G/K - G/H
aK — agH.

Comme dans ’exercice précédent, nous devons montrer que ¢ est bien définie. A cette fin,
supposons que aK = bK. Cela équivaut & dire que b~'a € K. Nous devons montrer agH = bgH.
Cela équivaut & g 'b~lag € H, ce qui est vrai puisque b~'a € K et g~'Kg = H. De plus, c’est
un morphisme de G-ensembles car

o9 - aK) = p(g'aK) = (g'ag)H
=g (agH) = g"- p(aK).
Nous définissons maintenant son inverse
v:G/H - G/K
aH — ag 'K,

En utilisant un argument similaire, nous pouvons montrer que 1 est bien définie et que c’est
un morphisme de G-ensembles. Il est clair que ¢ et ¥ sont inverses I'un de ’autre, prouvant la
réciproque.

Inversement, supposons que ¢ : G/H — G /K est un isomorphisme de G-ensembles. Il existe
g € G tel que ¢(H) = gK. Nous visons & montrer que K = gHg~'. Comme ¢ est bien définie,
nous avons que
gK = ¢(H) = ¢(h™"H) = h™'¢(H) = h™'gK
pour tout h € H. Ainsi ghg™' € K pour tout h € H et donc gHg~' C K. D’autre part,
#(H) = gK implique que ¢~ 1(K) = g~ 'H. En utilisant le méme argument pour ¢~ et g—1,
nous obtenons que ¢~ K¢ C H, ce qui montre que K = gHg™ .

Exercise 4. (1) Nous définissons une application ® : G — Bij(X) par g — @4, ot ®4(W) =
g(W) pour tout W € X. Tout d’abord, prouvons que I’application est bien définie,
c’est-a-dire que pour tout g € G, ®4 est une bijection sur X. En effet, comme g est un
automorphisme, il existe ¢’ € G tel que gog’ = ¢’ 0og = e, ol e est I’élément neutre de
G, c’est-a-dire e = idy. Nous pouvons alors vérifier que ¢,0®, = & 0®, = idx pour
conclure que ®, est une bijection. Il est simple de vérifier que ®;q,, = idx. De méme,
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pour tout g, € Get W € X, (go g ) (W) = g(¢'(W)) par définition des compositions
d’applications, ce qui nous donne ®,, = ®,0®,. Nous concluons que ® est une action.

(2) Prouvons que pour tout W, W’ € X, il existe g € G tel que g(W) = W' pour conclure
que l'action est transitive. Considérons {vy, v} une base de W que nous complétons en
une base {v1,v2,v3} de V. De méme, considérons {wy,ws} une base de W’ que nous
complétons en une base {wy, w2, w3} de V. L’application linéaire définie par g : V — V,
V1 — Wi, Uy — wa, V3 — ws est surjective et donc bijective (et donc un isomorphisme)
par le théoréme du noyau-image. Il est clair par définition que g(W) = W’ donc nous
avons terminé.

(3) Par le point (2), pour tout W € X, |Ow| = | X]|. Fixons un tel W. Nous savons que

(&
W = TStaba (W)

De plus, nous savons que G est le sous-groupe des matrices inversibles de M3(F3) et donc
que |G| = (23 —1)(23—2)(23—4) = 7-6-4 = 168 (vous avez vu cela en algebre linéaire).
Trouvons maintenant |Stabg(W)| pour conclure. Considérons {vy,v2} une base de W
que nous complétons en une base {v1, va, v3} pour V. Si g € G fixe W, nous devons avoir
g(v1),g(ve2) € W linéairement indépendants. Il y a 6 tels choix. Maintenant, les choix
définissant un tel isomorphisme linéaire g lorsque g(v1) et g(ve) sont fixés se résument
aux choix de I'image de v3 telle qu’elle ne soit pas contenue dans W. Iy a [V|—|W| =4

de ces choix, donc nous concluons que [Stabg(W)| =64 =24 et que |X| =158 =7.

Exercise 5. (1) Le théoreme de I'orbite-stabilisateur donne :
|G- 1][Staba(1)] = |G].

Comme 'action est transitive, il n’y a qu’une seule orbite de I’action et donc |G- 1| = n.
Par conséquent, n | |G|.

(2) Nous laissons au lecteur de vérifier que la conjugaison définit une action sur I’ensemble
des sous-groupes de G.

Nous avons que
Stabg(H) = {g € G|gHg™' = H}.

Le groupe ci-dessus, Stabg(H), est connu sous le nom de normalisateur de H dans G,
souvent noté Ng(H). Notez que Ng(H) est le plus grand sous-groupe de G qui contient
H comme sous-groupe normal.

Exercise 6. Nous procédons par contradiction. Supposons que pour tout x € X, il existe
g € G tel que g -z # x. Cela signifie précisément que tous les stabilisateurs Stabg(z) sont
des sous-groupes stricts de G, et donc ont une cardinalité [Stabg(z)| = p** < p™ pour certains
0 < kg < n. Soit X un ensemble de représentants des orbites. Par une formule vue en cours,
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nous avons :
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ce qui prouve que p||X|. Cela contredit ’hypothese et donc il doit exister z € X tel que son
stabilisateur soit G, c’est-a-dire tel que g - ¢ = x pour tout g € G.



